
1.1 Introduction 

Computer software is, essentially, a list of instructions given to a computer to 

execute. At a high-level, these can instruct a computer to connect to the internet, 

open a file for reading or playback music. They can also instruct a computer to 

delete important files, encrypt their contents or send file contents to unknown 

entities. Software that performs malicious activities is called malware. While 

there are behavioral differences at a high-level, malware and benign software 

have no inherent differences at a low-level, i.e., their machine code. To the 

untrained eye, their disassembly provides no clues about intent. The disassembly 

of a software program is the representation of its binary content in machine-code 

instructions form. Fig. 1 shows the disassembly of the main function of a Hello 

World program as viewed in IDA disassembler.1 Threat actors generally do not 

release the source code for their malware. As such, malware analysts have to rely 

on the disassembly to determine a malware's intent. This introduces the 

assumption that the disassembly being analyzed is actually related to the malware, 

and this is where we get into muddy waters. 

 
1 https://hex-rays.com/ida-pro/ 



 

Figure 1: x86 Disassembly as viewed in IDA 

Packers are software that are used to obfuscate a program's contents. They can be 

leveraged for both benign and malicious software. In general, a packer performs 

two actions: it compresses or encrypts the contents of the original binary; and it 

adds an unpacking code (or stub) which is executed first when the packed binary 

is run.2 A common method employed by packers is to add an unpacking stub that 

reverses the packing process at runtime and then executes the contents of the 

original binary. When a malware analyst views the disassembly of a packed 

 
2 https://encyclopedia.kaspersky.com/glossary/packer/; 

https://www.welivesecurity.com/2008/10/27/an-introduction-to-packers/ 



binary, they are not looking at the code of the original binary. Instead, they are 

looking at code related to the packer, likely the unpacking stub. 

When malware analysts find themselves in this situation, they have multiple 

options for the next step. They can place the malware under a debugger, such as 

x64dbg3, wait for the moment when the unpacked binary is available in memory 

and then dump it to disk. Another option is to find an open-sourced tool that is 

capable of unpacking the said binary. The last option is to analyze the 

disassembly and produce an unpacking program based on the results of the 

analysis. There are pros and cons to each of these options. The first option is not 

scalable. If given a hundred binaries, an analyst would need to spend an 

inordinate amount of time to place each binary under a debugger to get the 

unpacked version. The second option requires that the open-sourced tool support 

the packer at hand. It can only unpack the packed binary if it knows the unpacking 

code for that packer. This is the best option for well-known packers, such as UPX, 

which are generally supported by open-source unpackers. The third option may 

require significant time investment depending on the sophistication of the packer. 

However, the produced unpacking program is scalable, and if open-sourced is 

 
3 https://x64dbg.com 



also available for the community to use. This is the option we have chosen to 

follow, since ELFuck does not have an open-sourced unpacking tool. 

ELFuck is a packer for 32-bit ELF binaries and is written mostly in C and x86 

assembly.4 It uses custom code to load the original binary into memory for 

execution. NRV2E algorithm is used to compress the loader and the original 

binary contents.5 The unpacking stub decompresses and executes the loader and 

the original binary contents at runtime in memory. ELFuck has three main 

features which can be used in combination with each other: compression with 

NRV2E; polymorphic scrambler; and a password-based binary locking 

mechanism.6 This paper describes the packing technique and the polymorphic 

scrambler used by ELFuck, and contributes an unpacking program written in the 

Python language. The unpacking tool leverages the Qiling framework for 

emulating the packed binary.7 We do not explore the password-based binary 

locking feature because it is generally not leveraged by malware, which are 

intended to execute autonomously. We also primarily focus on malware which are 

targeted to little-endian systems. 

 
4 https://github.com/timhsutw/elfuck 
5 https://github.com/korczis/ucl/blob/master/src/n2_99.ch#L372 
6 https://github.com/timhsutw/elfuck/tree/master/doc 
7 https://qiling.io; https://github.com/qilingframework/qiling 



1.2 ELF Format 

The Executable and Linkable Format (ELF) is a standard file format for Linux-

based executables, object code, shared libraries and core dumps.8 Each ELF file 

contains four important parts: ELF header; program header table; section header 

table; and file data. More information about the ELF format is available in the 

Linux manual page.9 Debugging tools such as gdb10, readelf11 and pyelftools12 are 

capable of parsing an ELF file and returning information about it. For example, 

the snippet below shows readelf being leveraged to display the ELF header of an 

ELF binary. The ELF header describes metadata about the file such as the type of 

ELF file, the architecture it targets, and more. 

$ readelf -h hello_world_dynamic 

ELF Header: 

    Magic:                             7f 45 4c 46 01 

01 01 00 00 00 00 00 00 00 00 00 

    Class:                             ELF32 

    Data:                              2's complement, 

 
8 https://en.wikipedia.org/wiki/Executable_and_Linkable_Format 
9 https://man7.org/linux/man-pages/man5/elf.5.html 
10 https://www.sourceware.org/gdb/ 
11 https://man7.org/linux/man-pages/man1/readelf.1.html 
12 https://github.com/eliben/pyelftools 



little endian 

    Version:                           1 (current) 

    OS/ABI:                            UNIX - System V 

    ABI Version:                       0 

    Type:                              EXEC 

(Executable file) 

    Machine:                           Intel 80386 

    Version:                           0x1 

    Entry point address:               0x8048310 

    Start of program headers:          52 (bytes into 

file) 

    Start of section headers:          6116 (bytes 

into file) 

    Flags:                             0x0 

    Size of this header:               52 (bytes) 

    Size of program headers:           32 (bytes) 

    Number of program headers:         9 

    Size of section headers:           40 (bytes) 

    Number of section headers:         31 

    Section header string table index: 28 



It is also important to note that these debugging tools assume that the integrity of 

the ELF header is not compromised. Parsing an ELF binary fails if some fields, 

such as e_shoff, in the ELF header are corrupted. In one ELF binary, we 

modified the value of the e_shoff field such that it pointed beyond the file. 

According to the Linux manual page, e_shoff holds the section header table’s 

file offset in bytes. readelf was unable to parse the section header table due to this 

corruption as can be seen in the snippet below: 

$ readelf -S hello_world 

There are 31 section headers, starting at offset 

0xffffffa: 

readelf: Error: Reading 1240 bytes extends past end of 

file for section headers 

The program header table describes segments which contain information required 

by the Linux kernel to load and execute the ELF file. Only segments of type, 

PT_LOAD are loaded into memory. All other segments are mapped into one of the 

PT_LOAD segments. The snippet below shows the program header table of an 

ELF binary: 

$ readelf -l hello_world_dynamic 

 



Elf file type is EXEC (Executable file) 

Entry point 0x8048310 

There are 9 program headers, starting at offset 52 

 

Program Headers: 

  Type           Offset   VirtAddr   PhysAddr   FileSi

z MemSiz  Flg Align 

  PHDR           0x000034 0x08048034 0x08048034 

0x00120 0x00120 R E 0x4 

  INTERP         0x000154 0x08048154 0x08048154 

0x00013 0x00013 R   0x1 

      [Requesting program interpreter: /lib/ld-

linux.so.2] 

  LOAD           0x000000 0x08048000 0x08048000 

0x005c8 0x005c8 R E 0x1000 

  LOAD           0x000f08 0x08049f08 0x08049f08 

0x00114 0x00118 RW  0x1000 

  DYNAMIC        0x000f14 0x08049f14 0x08049f14 

0x000e8 0x000e8 RW  0x4 

  NOTE           0x000168 0x08048168 0x08048168 

0x00044 0x00044 R   0x4 



  GNU_EH_FRAME   0x0004d0 0x080484d0 0x080484d0 

0x0002c 0x0002c R   0x4 

  GNU_STACK      0x000000 0x00000000 0x00000000 

0x00000 0x00000 RW  0x10 

  GNU_RELRO      0x000f08 0x08049f08 0x08049f08 

0x000f8 0x000f8 R   0x1 

 

 Section to Segment mapping: 

  Segment Sections... 

   00      

   01     .interp  

   02     .interp .note.ABI-tag … … .text .fini …  

   03     .init_array .fini_array .jcr .dynamic .got 

.got.plt .data .bss  

   04     .dynamic  

   05     .note.ABI-tag .note.gnu.build-id  

   06     .eh_frame_hdr  

   07      

   08     .init_array .fini_array .jcr .dynamic .got 

Note that the virtual address of the first PT_LOAD segment (in bold above) is the 

same as the base address of the ELF binary in memory. Consequently, the ELF 



header is also part of the first PT_LOAD segment. Different segments may have 

different access flags. For example, the first PT_LOAD segment above has read-

execute permissions (likely contains executable instructions), while the other has 

read-write permissions (likely contains data). It is difficult to enforce access 

attributes if two such segments are in the same page in memory. For this reason, 

segments are aligned with the system page size (usually 4 KB).13 

The section header table describes sections which contain information required 

for relocations (handled by the ELF static linker) and the ELF dynamic linker. It 

is primarily useful for debugging tools such as gdb, readelf and pyelftools which 

use it to locate section information, notably the .symtab (symbol table) and 

.shstrtab (section name strings) sections. It is important to note that the section 

header table is not required to successfully load and execute an ELF binary. The 

snippet below shows the section header table of an ELF binary: 

$ readelf -S hello_world_dynamic 

There are 31 section headers, starting at offset 

0x17e4: 

 

Section Headers: 

 
13 https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-

segments/ 



  [Nr] 

Name              Type            Addr     Off    Size 

  ES Flg Lk Inf Al 

  [ 0]                   NULL            00000000 

000000 000000 00      0   0  0 

  [ 1] .interp           PROGBITS        08048154 

000154 000013 00   A  0   0  1 

  [ 2] .note.ABI-tag     NOTE            08048168 

000168 000020 00   A  0   0  4 

  [ 3] .note.gnu.build-i NOTE            08048188 

000188 000024 00   A  0   0  4 

  [ 4] .gnu.hash         GNU_HASH        080481ac 

0001ac 000020 04   A  5   0  4 

   … 

   … 

  [14] .text             PROGBITS        08048310 

000310 000192 00  AX  0   0 16 

   … 

   … 

  [28] .shstrtab         STRTAB          00000000 

0016d9 00010a 00      0   0  1 



  [29] .symtab           SYMTAB          00000000 

001054 000450 10     30  47  4 

  [30] .strtab           STRTAB          00000000 

0014a4 000235 00      0   0  1 

Key to Flags: 

  W (write), A (alloc), X (execute), M (merge), S 

(strings), I (info), 

  L (link order), O (extra OS processing required), G 

(group), T (TLS), 

  C (compressed), x (unknown), o (OS specific), E 

(exclude), 

  p (processor specific) 

1.3 ELFuck Features 

1.3.1 Packing via Compression 

The Linux kernel requires data in PT_LOAD segments to successfully load and 

execute an ELF binary. The ELF dynamic linker (relevant for dynamically-linked 

ELF binaries) requires the interpreter string (refers to an ELF binary and outlined 

in the PT_INTERP segment) to perform dynamic relocations at load time. 

Consequently, ELFuck extracts the contents of only the PT_LOAD and 



PT_INTERP segments of the original ELF binary. It keeps track of the lowest 

and the highest virtual address at which the contents of these segments exist on-

disk and in-memory. The interpreter, if any, is copied to the end of ELFuck’s ELF 

loader. If PT_INTERP segment is not found, such as for statically-linked ELF 

binaries, the interpreter loading code in ELFuck’s ELF loader is zeroed. 

ELFuck creates a single page-aligned PT_LOAD segment. Its size is equal to the 

sum of the loader; interpreter string, if any; and difference of the highest and 

lowest page-aligned virtual addresses of the PT_LOAD segments of the original 

ELF binary. The ELF loader and interpreter string, if any, are first copied into this 

memory region. They are followed by the contents of the PT_LOAD segments. 

This memory region is then compressed with NRV2E algorithm. 

ELFuck then places an auxiliary vector containing information required by the 

ELF dynamic linker. This information includes the address of the program header 

table, number of entries in it and entry point of the original ELF binary. Finally, 

an unpacking stub and banner are added prior to the memory address containing 

compressed data. It is possible to skip the addition of the banner through a 

command-line argument to the ELFuck program. An ELF header and program 

header table are constructed and added before the banner. A rough memory layout 

of the packed binary is shown below: 



ELF Header 

Program Header Table 

ELFuck Banner 

Unpacking Stub 

Compressed Data 

Auxiliary vector for ELF Dynamic Linker 

 

Table 1: Memory layout of packed binary 

The EI_CLASS and EI_DATA fields in the packed binary’s ELF header are left 

empty (aka, zero) which causes parsing issues for debugging tools such as gdb 

and pyelftools as shown in the snippets below: 

 

$ ipython 

Python 3.8.10 (default, Nov 26 2021, 20:14:08) 

Type 'copyright', 'credits' or 'license' for more 

information 

IPython 7.30.1 -- An enhanced Interactive Python. Type 

'?' for help. 

 

In [1]: from elftools.elf.elffile import ELFFile 



 

In [2]: data = 

ELFFile(open('hello_world_dynamic_packed', 'rb')) 

------------------------------------------------------

--------------------- 

ELFError                                  Traceback 

(most recent call last) 

<ipython-input-2-68a6730f2411> in <module> 

----> 1 data = 

ELFFile(open('hello_world_dynamic_packed', 'rb')) 

 

~/.local/lib/python3.8/site-

packages/elftools/elf/elffile.py in __init__(self, 

stream) 

     71     def __init__(self, stream): 

     72         self.stream = stream 

---> 73         self._identify_file() 

     74         self.structs = ELFStructs( 

     75             little_endian=self.little_endian, 

 

~/.local/lib/python3.8/site-



packages/elftools/elf/elffile.py in 

_identify_file(self) 

    488             self.elfclass = 64 

    489         else: 

--> 490             raise ELFError('Invalid EI_CLASS 

%s' % repr(ei_class)) 

    491 

    492         ei_data = self.stream.read(1) 

 

ELFError: Invalid EI_CLASS b'\x00' 

 

 

$ gdb -q ./hello_world_dynamic_packed 

“./hello_world_dynamic_packed”: not in executable 

format: file format not recognized 

(gdb) quit 

 

The C-based code that performs the above functions is available in ELFuck’s 

GitHub repository.14 

 
14 https://github.com/timhsutw/elfuck/blob/master/src/stubify.c 



1.3.2 Polymorphic Scrambler 

ELFuck uses a polymorphic scrambler to produce a unique packed binary each 

time. This is effective for evading hash and pattern-based detection systems. It 

achieves this by adding junk instructions and encrypting the unpacking stub, 

compressed data and auxiliary vector with different keys each time. Encryption 

keys are generated using C rand() function and the seed to rand() is the 

epoch time at the time of packing. The memory layout of an ELF binary packed 

by leveraging ELFuck polymorphic features is shown below: 

ELF Header 

Program Header Table 

ELFuck Banner 

Polymorphic Descrambler 

(Mix of Junk bytes / instructions and decryption instructions) 

Encrypted Unpacking Stub, 

Encrypted Compressed Data, 

Encrypted Auxiliary vector for ELF Dynamic Linker 

 

Table 2: Memory layout of packed program with polymorphic scrambler 



The snap below shows an example of junk instructions interleaved with 

instructions related to the decryption algorithm. Instructions at address 

0x80460AF and 0x80460BF are related to the decryption algorithm (moves 

decryption keys into registers) while the others are junk instructions. Although 

this kind of polymorphism is unsophisticated, it presents an additional layer of 

difficulty to the novice analyst. 

 

Figure 2: Polymorphic Junk Instructions + Decryption Algorithm Instruction 



A C-based encryption code is used to encrypt the unpacking stub, compressed 

data and auxiliary vector. It is available in the ELFuck repository.15 The code 

below shows the Python version: 

len_data = (len(data_to_compress) + 3) >> 2 

for i in range(len_data): 

    data[i] += key2 

    data[i] ^= key1 

    key1 += key2 

The decryption code is shown below: 

for i in range(len(encrypted_data)): 

    encrypted_data[i] ^= key1 

    encrypted_data[i] -= key2 

    key1 += key2 

1.3.3 ELFuck ELF Loader 

Before diving into ELFuck’s custom loader, we wanted to present some 

contextual information. The stack structure16 of a loaded and initialized process is 

 
15 https://github.com/timhsutw/elfuck/blob/master/src/poly.c 
16 https://articles.manugarg.com/aboutelfauxiliaryvectors.html 



shown below. This structure allows a newly running program to figure out where 

information on the stack is located. 

 

 

 

Figure 3: Stack structure of initialized process 

 



For our purposes, the auxiliary vector is the most important. It lies immediately 

after the environment variable values on the stack and is primarily used by the 

program interpreter. The auxiliary vector comprises of an array of structures of 

type Elf32_auxv_t:17 

 

typedef struct 

{ 

    uint32_t a_type;              /* Entry type */ 

    union 

    { 

        uint32_t a_val;           /* Integer value */ 

        /* We use to have pointer elements added here.  

We cannot do that, 

           though, since it does not work when using 

32-bit definitions 

           on 64-bit platforms and vice versa.  */ 

    } a_un; 

} Elf32_auxv_t; 

 

 
17 https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h#l1138 



Acceptable entry types are declared in auxvec.h18. Earlier, we mentioned that 

during the packing process ELFuck places an auxiliary vector in the packed 

binary. However, it only places the value of each entry and not the type. This 

works because the values are placed in order, so ELFuck’s loader known which 

values belong to which type. Now that we have some contextual information, 

we’ll explore how ELFuck sets up the stack to get the packed binary up and 

running. 

 

Statically-linked ELF binaries do not require a program interpreter to perform 

additional linking (aka dynamic linking), so ELFuck’s loading process is fairly 

straightforward. It modifies the values of AT_PHDR, AT_PHNUM, AT_ENTRY 

fields in the auxiliary vector to reflect that of the original binary19 and then jumps 

to the entry point of the original ELF binary. 

 

The algorithm is more involved for dynamically-linked executables. Earlier in 

section 1.3.1, we mentioned that the interpreter string is copied to the end of 

ELFuck’s ELF loader. This string points to the Linux ELF loader on disk, which 

in itself is and must be an ELF binary. ELFuck’s loader opens this file and reads 

the first 4096 bytes. It loads all PT_LOAD segments of the Linux ELF interpreter 

 
18 https://github.com/torvalds/linux/blob/v3.19/arch/ia64/include/uapi/asm/auxvec.h; 

https://github.com/torvalds/linux/blob/v3.19/include/uapi/linux/auxvec.h 
19 https://github.com/timhsutw/elfuck/blob/master/src/execelf.S#L271-L283 



into memory. It modifies the values of AT_PHDR, AT_PHNUM fields in the 

auxiliary vector to reflect that of the original binary. The value of AT_ENTRY 

field in the auxiliary vector is set to the entry point of the Linux ELF interpreter 

and control jumps to this address. The Linux ELF interpreter then performs 

dynamic linking and passes control to the original binary. 

 

The manner in which ELFuck loads the Linux ELF interpreter into memory seems 

to be faulty. This is reflected by an error in the run-time dynamic linker (aka, the 

Linux ELF interpreter). We’ve not been able to execute a simple packed 

dynamically-linked HelloWorld program: 

 

$ ./hello_world_dynamic_packed 

Inconsistency detected by ld.so: rtld.c: 1206: 

dl_main: Assertion `GL(dl_rtld_map).l_libname->next == 

NULL' failed! 

 

The author of ELFuck is aware of this6: The name is not random, the 

way we're loading ELF binary into memory is not so 

clean, so things are just getting fucked up sometimes. It 

is part of our future work to identify the cause of this inconsistency and fix it in 

the ELFuck loader. 



1.4 Unpacking Tool 

To unpack a packed ELF binary and dump the original, we emulate it until the 

unpacked binary is available in memory. We used the Qiling framework for 

emulation. 

As mentioned earlier, EI_CLASS and EI_DATA fields in the packed binary are 

set to zero. This results in a parsing error in pyelftools which is internally used in 

the Qiling framework. The first step taken by the unpacking tool is fixing these 

fields in the ELF header. EI_CLASS is set to ELFCLASS32 since ELFuck only 

operates on 32-bit ELF binaries. We assume that the original binary also targets 

little-endian systems, so EI_DATA is set to ELFDATA2LSB. Once the headers 

are fixed, we dump the corrected ELF binary to disk. 

The unpacking tool leverages the Qiling framework for emulating the packed 

binary. The emulation requires two arguments: file path to the binary and root 

filesystem path of 32-bit Linux. The root filesystem is available in the Qiling 

framework GitHub repository.20 We hooked all instructions and waited for the 

first scasb instruction to hit. This signaled the end of decompression and EDI 

 
20 

https://github.com/qilingframework/rootfs/tree/d8a9b0d6c52a3c5bc627c055d5f711dacbb1a1f6/x8

6_linux 



+ 1 pointed to either the first PT_LOAD segment of the unpacked binary, or the 

ELF interpreter string that was copied to the end of the ELF loader by ELFuck’s 

packing algorithm. If it points to the ELF interpreter string, we jump over those 

bytes until we reach a PT_LOAD segment that starts with the ELF magic, 

\x7fELF. The memory address of this PT_LOAD segment marks the base 

address of the unpacked binary and emulation is terminated. 

The next step is to read the bytes of the memory region containing the unpacked 

binary. The first argument to read() is the base address of the unpacked binary, 

say B, which we previously determined. The second argument is the number of 

bytes to read. To ensure that all data belonging to PT_LOAD segments are read, 

we needed the highest address, say H, at which such data exists. We could then 

subtract the base address, B of the unpacked binary from it to get the number of 

bytes to read. In the packed binary, p_memsz attribute of the only entry in the 

program header table is calculated as the difference of H and the base address of 

the packed binary in memory. Since this is the first and only PT_LOAD segment, 

its p_vaddr attribute value is equal to the base address of the packed binary. 

Thus, we can calculate H as the summation of p_memsz and p_vaddr. 

Moreover, the number of bytes to read is equal to the difference of H and B, where 

H is the highest memory address where data of the unpacked binary can exist, and 

B is the base address of the unpacked binary 



We also extract the number of entries, i.e., e_phnum, in the program header table 

of the original binary. The ESI register points to the auxiliary vector which was 

placed after the compressed data by ELFuck’s packing routine. This vector 

contains the value of e_phnum. This value is required for the tool to traverse the 

program header table and correct the file offsets of each entry, in a process called 

file unmapping. For each PT_LOAD entry in the program header table of the 

unpacked binary we subtract the segment's virtual address, i.e., p_vaddr from 

the base address of the unpacked binary and assign it to the p_offset field of 

the said entry. If the binary contains a PT_INTERP segment, we subtract the 

length of the interpreter string from p_offset as well. Remember that the 

interpreter string existed before the first PT_LOAD segment in the decompressed 

region, thus pushing ahead offsets by the length of the interpreter string. This 

unmapping process corrects that offset. 

The unmapped ELF binary is dumped to disk and ready for analysis. It is 

important to note that there is no section header table in the unpacked ELF binary. 

It was lost in the packing process. Any tool that relies on the section header table 

to find sections containing information helpful to debugging will fail to find it. 

For example, IDA will not be able to determine function names if it cannot find 

.symtab or .strtab sections. 



The Python-based unpacking tool is available in the supplementary material. It 

was tested with Python v3.6.9 and ELFuck at 

commit 5e60852b1fc2f1b5eb5d8834152eeffd0f8b3597. An example 

is shown below: 

$ python3 deob.py -f hello_world_dynamic_packed_poly -

-fs ~/qiling/examples/rootfs/x86_linux 

[+] Profile: Default 

[+] Map GDT at 0x30000 with GDT_LIMIT=4096 

[+] Write to 0x30018 for new entry 

b'\x00\xf0\x00\x00\x00\xfeO\x00' 

[+] Write to 0x30028 for new entry 

b'\x00\xf0\x00\x00\x00\x96O\x00' 

[+] Mapped 0x8046000-0x804b000 

[+] mem_start : 0x8046000 

[+] mem_end   : 0x804b000 

[+] mmap_address is : 0x774bf000 

$ chmod +x 

hello_world_dynamic_packed_poly_fixed_unpacked 

$ ./hello_world_dynamic_packed_poly_fixed_unpacked 

Hello World! 



It is good that even though a packed dynamically-linked ELF binary may not 

execute (as we noted earlier), we can still unpack it and retrieve the original 

binary. The disassembly below shows the difference between a packed ELFuck 

binary and an unpacked ELF binary: 

 

 

Figure 4: ELFuck-packed Hello World ELF Binary 

 



 

Figure 5: Hello World ELF Binary after Unpacking 

1.5 Conclusion 

ELFuck is a packer for 32-bit ELF binaries. While we were not able to 

successfully execute a packed dynamically-linked ELF binary, we could execute a 

packed statically-linked ELF binary. It is a relatively old software, but it can still 

be used to pack the latest malware and evade hash or pattern-based detection 

systems. Blue teams can use our Python-based unpacking script in their detection 

systems to unpack ELF binaries packed with ELFuck. This will enable them to be 

more effective with their detection content. 


