
1.1 Introduction

Computer software is, essentially, a list of instructions given to a computer to

execute. At a high-level, these can instruct a computer to connect to the internet,

open a file for reading or playback music. They can also instruct a computer to

delete important files, encrypt their contents or send file contents to unknown

entities. Software that performs malicious activities is called malware. While

there are behavioral differences at a high-level, malware and benign software

have no inherent differences at a low-level, i.e., their machine code. To the

untrained eye, their disassembly provides no clues about intent. The disassembly

of a software program is the representation of its binary content in machine-code

instructions form. Fig. 1 shows the disassembly of the main function of a Hello

World program as viewed in IDA disassembler.1 Threat actors generally do not

release the source code for their malware. As such, malware analysts have to rely

on the disassembly to determine a malware's intent. This introduces the

assumption that the disassembly being analyzed is actually related to the malware,

and this is where we get into muddy waters.

1 https://hex-rays.com/ida-pro/

Figure 1: x86 Disassembly as viewed in IDA

Packers are software that are used to obfuscate a program's contents. They can be

leveraged for both benign and malicious software. In general, a packer performs

two actions: it compresses or encrypts the contents of the original binary; and it

adds an unpacking code (or stub) which is executed first when the packed binary

is run.2 A common method employed by packers is to add an unpacking stub that

reverses the packing process at runtime and then executes the contents of the

original binary. When a malware analyst views the disassembly of a packed

2 https://encyclopedia.kaspersky.com/glossary/packer/;

https://www.welivesecurity.com/2008/10/27/an-introduction-to-packers/

binary, they are not looking at the code of the original binary. Instead, they are

looking at code related to the packer, likely the unpacking stub.

When malware analysts find themselves in this situation, they have multiple

options for the next step. They can place the malware under a debugger, such as

x64dbg3, wait for the moment when the unpacked binary is available in memory

and then dump it to disk. Another option is to find an open-sourced tool that is

capable of unpacking the said binary. The last option is to analyze the

disassembly and produce an unpacking program based on the results of the

analysis. There are pros and cons to each of these options. The first option is not

scalable. If given a hundred binaries, an analyst would need to spend an

inordinate amount of time to place each binary under a debugger to get the

unpacked version. The second option requires that the open-sourced tool support

the packer at hand. It can only unpack the packed binary if it knows the unpacking

code for that packer. This is the best option for well-known packers, such as UPX,

which are generally supported by open-source unpackers. The third option may

require significant time investment depending on the sophistication of the packer.

However, the produced unpacking program is scalable, and if open-sourced is

3 https://x64dbg.com

also available for the community to use. This is the option we have chosen to

follow, since ELFuck does not have an open-sourced unpacking tool.

ELFuck is a packer for 32-bit ELF binaries and is written mostly in C and x86

assembly.4 It uses custom code to load the original binary into memory for

execution. NRV2E algorithm is used to compress the loader and the original

binary contents.5 The unpacking stub decompresses and executes the loader and

the original binary contents at runtime in memory. ELFuck has three main

features which can be used in combination with each other: compression with

NRV2E; polymorphic scrambler; and a password-based binary locking

mechanism.6 This paper describes the packing technique and the polymorphic

scrambler used by ELFuck, and contributes an unpacking program written in the

Python language. The unpacking tool leverages the Qiling framework for

emulating the packed binary.7 We do not explore the password-based binary

locking feature because it is generally not leveraged by malware, which are

intended to execute autonomously. We also primarily focus on malware which are

targeted to little-endian systems.

4 https://github.com/timhsutw/elfuck
5 https://github.com/korczis/ucl/blob/master/src/n2_99.ch#L372
6 https://github.com/timhsutw/elfuck/tree/master/doc
7 https://qiling.io; https://github.com/qilingframework/qiling

1.2 ELF Format

The Executable and Linkable Format (ELF) is a standard file format for Linux-

based executables, object code, shared libraries and core dumps.8 Each ELF file

contains four important parts: ELF header; program header table; section header

table; and file data. More information about the ELF format is available in the

Linux manual page.9 Debugging tools such as gdb10, readelf11 and pyelftools12 are

capable of parsing an ELF file and returning information about it. For example,

the snippet below shows readelf being leveraged to display the ELF header of an

ELF binary. The ELF header describes metadata about the file such as the type of

ELF file, the architecture it targets, and more.

$ readelf -h hello_world_dynamic

ELF Header:

 Magic: 7f 45 4c 46 01

01 01 00 00 00 00 00 00 00 00 00

 Class: ELF32

 Data: 2's complement,

8 https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
9 https://man7.org/linux/man-pages/man5/elf.5.html
10 https://www.sourceware.org/gdb/
11 https://man7.org/linux/man-pages/man1/readelf.1.html
12 https://github.com/eliben/pyelftools

little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: EXEC

(Executable file)

 Machine: Intel 80386

 Version: 0x1

 Entry point address: 0x8048310

 Start of program headers: 52 (bytes into

file)

 Start of section headers: 6116 (bytes

into file)

 Flags: 0x0

 Size of this header: 52 (bytes)

 Size of program headers: 32 (bytes)

 Number of program headers: 9

 Size of section headers: 40 (bytes)

 Number of section headers: 31

 Section header string table index: 28

It is also important to note that these debugging tools assume that the integrity of

the ELF header is not compromised. Parsing an ELF binary fails if some fields,

such as e_shoff, in the ELF header are corrupted. In one ELF binary, we

modified the value of the e_shoff field such that it pointed beyond the file.

According to the Linux manual page, e_shoff holds the section header table’s

file offset in bytes. readelf was unable to parse the section header table due to this

corruption as can be seen in the snippet below:

$ readelf -S hello_world

There are 31 section headers, starting at offset

0xffffffa:

readelf: Error: Reading 1240 bytes extends past end of

file for section headers

The program header table describes segments which contain information required

by the Linux kernel to load and execute the ELF file. Only segments of type,

PT_LOAD are loaded into memory. All other segments are mapped into one of the

PT_LOAD segments. The snippet below shows the program header table of an

ELF binary:

$ readelf -l hello_world_dynamic

Elf file type is EXEC (Executable file)

Entry point 0x8048310

There are 9 program headers, starting at offset 52

Program Headers:

 Type Offset VirtAddr PhysAddr FileSi

z MemSiz Flg Align

 PHDR 0x000034 0x08048034 0x08048034

0x00120 0x00120 R E 0x4

 INTERP 0x000154 0x08048154 0x08048154

0x00013 0x00013 R 0x1

 [Requesting program interpreter: /lib/ld-

linux.so.2]

 LOAD 0x000000 0x08048000 0x08048000

0x005c8 0x005c8 R E 0x1000

 LOAD 0x000f08 0x08049f08 0x08049f08

0x00114 0x00118 RW 0x1000

 DYNAMIC 0x000f14 0x08049f14 0x08049f14

0x000e8 0x000e8 RW 0x4

 NOTE 0x000168 0x08048168 0x08048168

0x00044 0x00044 R 0x4

 GNU_EH_FRAME 0x0004d0 0x080484d0 0x080484d0

0x0002c 0x0002c R 0x4

 GNU_STACK 0x000000 0x00000000 0x00000000

0x00000 0x00000 RW 0x10

 GNU_RELRO 0x000f08 0x08049f08 0x08049f08

0x000f8 0x000f8 R 0x1

 Section to Segment mapping:

 Segment Sections...

 00

 01 .interp

 02 .interp .note.ABI-tag … … .text .fini …

 03 .init_array .fini_array .jcr .dynamic .got

.got.plt .data .bss

 04 .dynamic

 05 .note.ABI-tag .note.gnu.build-id

 06 .eh_frame_hdr

 07

 08 .init_array .fini_array .jcr .dynamic .got

Note that the virtual address of the first PT_LOAD segment (in bold above) is the

same as the base address of the ELF binary in memory. Consequently, the ELF

header is also part of the first PT_LOAD segment. Different segments may have

different access flags. For example, the first PT_LOAD segment above has read-

execute permissions (likely contains executable instructions), while the other has

read-write permissions (likely contains data). It is difficult to enforce access

attributes if two such segments are in the same page in memory. For this reason,

segments are aligned with the system page size (usually 4 KB).13

The section header table describes sections which contain information required

for relocations (handled by the ELF static linker) and the ELF dynamic linker. It

is primarily useful for debugging tools such as gdb, readelf and pyelftools which

use it to locate section information, notably the .symtab (symbol table) and

.shstrtab (section name strings) sections. It is important to note that the section

header table is not required to successfully load and execute an ELF binary. The

snippet below shows the section header table of an ELF binary:

$ readelf -S hello_world_dynamic

There are 31 section headers, starting at offset

0x17e4:

Section Headers:

13 https://www.intezer.com/blog/research/executable-linkable-format-101-part1-sections-

segments/

 [Nr]

Name Type Addr Off Size

 ES Flg Lk Inf Al

 [0] NULL 00000000

000000 000000 00 0 0 0

 [1] .interp PROGBITS 08048154

000154 000013 00 A 0 0 1

 [2] .note.ABI-tag NOTE 08048168

000168 000020 00 A 0 0 4

 [3] .note.gnu.build-i NOTE 08048188

000188 000024 00 A 0 0 4

 [4] .gnu.hash GNU_HASH 080481ac

0001ac 000020 04 A 5 0 4

 …

 …

 [14] .text PROGBITS 08048310

000310 000192 00 AX 0 0 16

 …

 …

 [28] .shstrtab STRTAB 00000000

0016d9 00010a 00 0 0 1

 [29] .symtab SYMTAB 00000000

001054 000450 10 30 47 4

 [30] .strtab STRTAB 00000000

0014a4 000235 00 0 0 1

Key to Flags:

 W (write), A (alloc), X (execute), M (merge), S

(strings), I (info),

 L (link order), O (extra OS processing required), G

(group), T (TLS),

 C (compressed), x (unknown), o (OS specific), E

(exclude),

 p (processor specific)

1.3 ELFuck Features

1.3.1 Packing via Compression

The Linux kernel requires data in PT_LOAD segments to successfully load and

execute an ELF binary. The ELF dynamic linker (relevant for dynamically-linked

ELF binaries) requires the interpreter string (refers to an ELF binary and outlined

in the PT_INTERP segment) to perform dynamic relocations at load time.

Consequently, ELFuck extracts the contents of only the PT_LOAD and

PT_INTERP segments of the original ELF binary. It keeps track of the lowest

and the highest virtual address at which the contents of these segments exist on-

disk and in-memory. The interpreter, if any, is copied to the end of ELFuck’s ELF

loader. If PT_INTERP segment is not found, such as for statically-linked ELF

binaries, the interpreter loading code in ELFuck’s ELF loader is zeroed.

ELFuck creates a single page-aligned PT_LOAD segment. Its size is equal to the

sum of the loader; interpreter string, if any; and difference of the highest and

lowest page-aligned virtual addresses of the PT_LOAD segments of the original

ELF binary. The ELF loader and interpreter string, if any, are first copied into this

memory region. They are followed by the contents of the PT_LOAD segments.

This memory region is then compressed with NRV2E algorithm.

ELFuck then places an auxiliary vector containing information required by the

ELF dynamic linker. This information includes the address of the program header

table, number of entries in it and entry point of the original ELF binary. Finally,

an unpacking stub and banner are added prior to the memory address containing

compressed data. It is possible to skip the addition of the banner through a

command-line argument to the ELFuck program. An ELF header and program

header table are constructed and added before the banner. A rough memory layout

of the packed binary is shown below:

ELF Header

Program Header Table

ELFuck Banner

Unpacking Stub

Compressed Data

Auxiliary vector for ELF Dynamic Linker

Table 1: Memory layout of packed binary

The EI_CLASS and EI_DATA fields in the packed binary’s ELF header are left

empty (aka, zero) which causes parsing issues for debugging tools such as gdb

and pyelftools as shown in the snippets below:

$ ipython

Python 3.8.10 (default, Nov 26 2021, 20:14:08)

Type 'copyright', 'credits' or 'license' for more

information

IPython 7.30.1 -- An enhanced Interactive Python. Type

'?' for help.

In [1]: from elftools.elf.elffile import ELFFile

In [2]: data =

ELFFile(open('hello_world_dynamic_packed', 'rb'))

--

ELFError Traceback

(most recent call last)

<ipython-input-2-68a6730f2411> in <module>

----> 1 data =

ELFFile(open('hello_world_dynamic_packed', 'rb'))

~/.local/lib/python3.8/site-

packages/elftools/elf/elffile.py in __init__(self,

stream)

 71 def __init__(self, stream):

 72 self.stream = stream

---> 73 self._identify_file()

 74 self.structs = ELFStructs(

 75 little_endian=self.little_endian,

~/.local/lib/python3.8/site-

packages/elftools/elf/elffile.py in

_identify_file(self)

 488 self.elfclass = 64

 489 else:

--> 490 raise ELFError('Invalid EI_CLASS

%s' % repr(ei_class))

 491

 492 ei_data = self.stream.read(1)

ELFError: Invalid EI_CLASS b'\x00'

$ gdb -q ./hello_world_dynamic_packed

“./hello_world_dynamic_packed”: not in executable

format: file format not recognized

(gdb) quit

The C-based code that performs the above functions is available in ELFuck’s

GitHub repository.14

14 https://github.com/timhsutw/elfuck/blob/master/src/stubify.c

1.3.2 Polymorphic Scrambler

ELFuck uses a polymorphic scrambler to produce a unique packed binary each

time. This is effective for evading hash and pattern-based detection systems. It

achieves this by adding junk instructions and encrypting the unpacking stub,

compressed data and auxiliary vector with different keys each time. Encryption

keys are generated using C rand() function and the seed to rand() is the

epoch time at the time of packing. The memory layout of an ELF binary packed

by leveraging ELFuck polymorphic features is shown below:

ELF Header

Program Header Table

ELFuck Banner

Polymorphic Descrambler

(Mix of Junk bytes / instructions and decryption instructions)

Encrypted Unpacking Stub,

Encrypted Compressed Data,

Encrypted Auxiliary vector for ELF Dynamic Linker

Table 2: Memory layout of packed program with polymorphic scrambler

The snap below shows an example of junk instructions interleaved with

instructions related to the decryption algorithm. Instructions at address

0x80460AF and 0x80460BF are related to the decryption algorithm (moves

decryption keys into registers) while the others are junk instructions. Although

this kind of polymorphism is unsophisticated, it presents an additional layer of

difficulty to the novice analyst.

Figure 2: Polymorphic Junk Instructions + Decryption Algorithm Instruction

A C-based encryption code is used to encrypt the unpacking stub, compressed

data and auxiliary vector. It is available in the ELFuck repository.15 The code

below shows the Python version:

len_data = (len(data_to_compress) + 3) >> 2

for i in range(len_data):

 data[i] += key2

 data[i] ^= key1

 key1 += key2

The decryption code is shown below:

for i in range(len(encrypted_data)):

 encrypted_data[i] ^= key1

 encrypted_data[i] -= key2

 key1 += key2

1.3.3 ELFuck ELF Loader

Before diving into ELFuck’s custom loader, we wanted to present some

contextual information. The stack structure16 of a loaded and initialized process is

15 https://github.com/timhsutw/elfuck/blob/master/src/poly.c
16 https://articles.manugarg.com/aboutelfauxiliaryvectors.html

shown below. This structure allows a newly running program to figure out where

information on the stack is located.

Figure 3: Stack structure of initialized process

For our purposes, the auxiliary vector is the most important. It lies immediately

after the environment variable values on the stack and is primarily used by the

program interpreter. The auxiliary vector comprises of an array of structures of

type Elf32_auxv_t:17

typedef struct

{

 uint32_t a_type; /* Entry type */

 union

 {

 uint32_t a_val; /* Integer value */

 /* We use to have pointer elements added here.

We cannot do that,

 though, since it does not work when using

32-bit definitions

 on 64-bit platforms and vice versa. */

 } a_un;

} Elf32_auxv_t;

17 https://sourceware.org/git/?p=glibc.git;a=blob;f=elf/elf.h#l1138

Acceptable entry types are declared in auxvec.h18. Earlier, we mentioned that

during the packing process ELFuck places an auxiliary vector in the packed

binary. However, it only places the value of each entry and not the type. This

works because the values are placed in order, so ELFuck’s loader known which

values belong to which type. Now that we have some contextual information,

we’ll explore how ELFuck sets up the stack to get the packed binary up and

running.

Statically-linked ELF binaries do not require a program interpreter to perform

additional linking (aka dynamic linking), so ELFuck’s loading process is fairly

straightforward. It modifies the values of AT_PHDR, AT_PHNUM, AT_ENTRY

fields in the auxiliary vector to reflect that of the original binary19 and then jumps

to the entry point of the original ELF binary.

The algorithm is more involved for dynamically-linked executables. Earlier in

section 1.3.1, we mentioned that the interpreter string is copied to the end of

ELFuck’s ELF loader. This string points to the Linux ELF loader on disk, which

in itself is and must be an ELF binary. ELFuck’s loader opens this file and reads

the first 4096 bytes. It loads all PT_LOAD segments of the Linux ELF interpreter

18 https://github.com/torvalds/linux/blob/v3.19/arch/ia64/include/uapi/asm/auxvec.h;

https://github.com/torvalds/linux/blob/v3.19/include/uapi/linux/auxvec.h
19 https://github.com/timhsutw/elfuck/blob/master/src/execelf.S#L271-L283

into memory. It modifies the values of AT_PHDR, AT_PHNUM fields in the

auxiliary vector to reflect that of the original binary. The value of AT_ENTRY

field in the auxiliary vector is set to the entry point of the Linux ELF interpreter

and control jumps to this address. The Linux ELF interpreter then performs

dynamic linking and passes control to the original binary.

The manner in which ELFuck loads the Linux ELF interpreter into memory seems

to be faulty. This is reflected by an error in the run-time dynamic linker (aka, the

Linux ELF interpreter). We’ve not been able to execute a simple packed

dynamically-linked HelloWorld program:

$./hello_world_dynamic_packed

Inconsistency detected by ld.so: rtld.c: 1206:

dl_main: Assertion `GL(dl_rtld_map).l_libname->next ==

NULL' failed!

The author of ELFuck is aware of this6: The name is not random, the

way we're loading ELF binary into memory is not so

clean, so things are just getting fucked up sometimes. It

is part of our future work to identify the cause of this inconsistency and fix it in

the ELFuck loader.

1.4 Unpacking Tool

To unpack a packed ELF binary and dump the original, we emulate it until the

unpacked binary is available in memory. We used the Qiling framework for

emulation.

As mentioned earlier, EI_CLASS and EI_DATA fields in the packed binary are

set to zero. This results in a parsing error in pyelftools which is internally used in

the Qiling framework. The first step taken by the unpacking tool is fixing these

fields in the ELF header. EI_CLASS is set to ELFCLASS32 since ELFuck only

operates on 32-bit ELF binaries. We assume that the original binary also targets

little-endian systems, so EI_DATA is set to ELFDATA2LSB. Once the headers

are fixed, we dump the corrected ELF binary to disk.

The unpacking tool leverages the Qiling framework for emulating the packed

binary. The emulation requires two arguments: file path to the binary and root

filesystem path of 32-bit Linux. The root filesystem is available in the Qiling

framework GitHub repository.20 We hooked all instructions and waited for the

first scasb instruction to hit. This signaled the end of decompression and EDI

20

https://github.com/qilingframework/rootfs/tree/d8a9b0d6c52a3c5bc627c055d5f711dacbb1a1f6/x8

6_linux

+ 1 pointed to either the first PT_LOAD segment of the unpacked binary, or the

ELF interpreter string that was copied to the end of the ELF loader by ELFuck’s

packing algorithm. If it points to the ELF interpreter string, we jump over those

bytes until we reach a PT_LOAD segment that starts with the ELF magic,

\x7fELF. The memory address of this PT_LOAD segment marks the base

address of the unpacked binary and emulation is terminated.

The next step is to read the bytes of the memory region containing the unpacked

binary. The first argument to read() is the base address of the unpacked binary,

say B, which we previously determined. The second argument is the number of

bytes to read. To ensure that all data belonging to PT_LOAD segments are read,

we needed the highest address, say H, at which such data exists. We could then

subtract the base address, B of the unpacked binary from it to get the number of

bytes to read. In the packed binary, p_memsz attribute of the only entry in the

program header table is calculated as the difference of H and the base address of

the packed binary in memory. Since this is the first and only PT_LOAD segment,

its p_vaddr attribute value is equal to the base address of the packed binary.

Thus, we can calculate H as the summation of p_memsz and p_vaddr.

Moreover, the number of bytes to read is equal to the difference of H and B, where

H is the highest memory address where data of the unpacked binary can exist, and

B is the base address of the unpacked binary

We also extract the number of entries, i.e., e_phnum, in the program header table

of the original binary. The ESI register points to the auxiliary vector which was

placed after the compressed data by ELFuck’s packing routine. This vector

contains the value of e_phnum. This value is required for the tool to traverse the

program header table and correct the file offsets of each entry, in a process called

file unmapping. For each PT_LOAD entry in the program header table of the

unpacked binary we subtract the segment's virtual address, i.e., p_vaddr from

the base address of the unpacked binary and assign it to the p_offset field of

the said entry. If the binary contains a PT_INTERP segment, we subtract the

length of the interpreter string from p_offset as well. Remember that the

interpreter string existed before the first PT_LOAD segment in the decompressed

region, thus pushing ahead offsets by the length of the interpreter string. This

unmapping process corrects that offset.

The unmapped ELF binary is dumped to disk and ready for analysis. It is

important to note that there is no section header table in the unpacked ELF binary.

It was lost in the packing process. Any tool that relies on the section header table

to find sections containing information helpful to debugging will fail to find it.

For example, IDA will not be able to determine function names if it cannot find

.symtab or .strtab sections.

The Python-based unpacking tool is available in the supplementary material. It

was tested with Python v3.6.9 and ELFuck at

commit 5e60852b1fc2f1b5eb5d8834152eeffd0f8b3597. An example

is shown below:

$ python3 deob.py -f hello_world_dynamic_packed_poly -

-fs ~/qiling/examples/rootfs/x86_linux

[+] Profile: Default

[+] Map GDT at 0x30000 with GDT_LIMIT=4096

[+] Write to 0x30018 for new entry

b'\x00\xf0\x00\x00\x00\xfeO\x00'

[+] Write to 0x30028 for new entry

b'\x00\xf0\x00\x00\x00\x96O\x00'

[+] Mapped 0x8046000-0x804b000

[+] mem_start : 0x8046000

[+] mem_end : 0x804b000

[+] mmap_address is : 0x774bf000

$ chmod +x

hello_world_dynamic_packed_poly_fixed_unpacked

$./hello_world_dynamic_packed_poly_fixed_unpacked

Hello World!

It is good that even though a packed dynamically-linked ELF binary may not

execute (as we noted earlier), we can still unpack it and retrieve the original

binary. The disassembly below shows the difference between a packed ELFuck

binary and an unpacked ELF binary:

Figure 4: ELFuck-packed Hello World ELF Binary

Figure 5: Hello World ELF Binary after Unpacking

1.5 Conclusion

ELFuck is a packer for 32-bit ELF binaries. While we were not able to

successfully execute a packed dynamically-linked ELF binary, we could execute a

packed statically-linked ELF binary. It is a relatively old software, but it can still

be used to pack the latest malware and evade hash or pattern-based detection

systems. Blue teams can use our Python-based unpacking script in their detection

systems to unpack ELF binaries packed with ELFuck. This will enable them to be

more effective with their detection content.

